A localized surface plasmon resonance imaging instrument for multiplexed biosensing.
نویسندگان
چکیده
Localized surface plasmon resonance (LSPR) spectroscopy has been widely used for label-free, highly sensitive measurements of interactions at a surface. LSPR imaging (LSPRi) has the full advantages of LSPR but enables high-throughput, multiplexed measurements by simultaneously probing multiple individually addressable sensors on a single sample surface. Each spatially distinct sensor can be tailored to provide data regarding different surface functionalities or reaction environments. Previously, LSPRi has focused on single-particle sensing where the size scale is very small. Here, we create defined macroscale arrays of nanoparticles that are compatible with common patterning methods such as dip-pen nanolithography and multichannel microfluidic delivery devices. With this new LSPR sensing format, we report the first demonstration of multiplexed LSPR imaging and show that the increased throughput of our instrument enables the collection of a complete Langmuir binding curve on a single sensor surface. In addition, the multiplexed LSPR sensor is highly selective, as demonstrated by the hybridization of single-stranded DNA to complementary sequences immobilized on the sensor surface. The LSPR arrays described in this work exhibit uniform sensitivity and tailorable optical properties, making them an ideal platform for high-throughput, label-free analysis of a variety of molecular binding interactions.
منابع مشابه
Localized Surface Plasmon Resonance Biosensing: Current Challenges and Approaches
Localized surface plasmon resonance (LSPR) has emerged as a leader among label-free biosensing techniques in that it offers sensitive, robust, and facile detection. Traditional LSPR-based biosensing utilizes the sensitivity of the plasmon frequency to changes in local index of refraction at the nanoparticle surface. Although surface plasmon resonance technologies are now widely used to measure ...
متن کاملHydrogen sensing by localized surface plasmon resonance in colloidal solutions of Au-WO3-Pd
Nowadays, hydrogen has attracted significant attention as a next generation clean energy source. Hydrogen is highly flammable, so detection of hydrogen gas is required. Gold nanoparticle based localized surface plasmon resonance (LSPR) is an advanced and powerful sensing technique, which is well known for its high sensitivity to surrounding refractive index change in the local environment. We p...
متن کاملThe coupling of localized surface plasmon resonance-based photoelectrochemistry and nanoparticle size effect: towards novel plasmonic photoelectrochemical biosensing.
Visible light-activated localized surface plasmon resonance-based photoelectrochemical detection is reported for the first time.
متن کاملOn-chip synthesis of protein microarrays from DNA microarrays via coupled in vitro transcription and translation for surface plasmon resonance imaging biosensor applications.
Protein microarrays are fabricated from double-stranded DNA (dsDNA) microarrays by a one-step, multiplexed enzymatic synthesis in an on-chip microfluidic format and then employed for antibody biosensing measurements with surface plasmon resonance imaging (SPRI). A microarray of dsDNA elements (denoted as generator elements) that encode either a His-tagged green fluorescent protein (GFP) or a Hi...
متن کاملBiosensing Based on Localized Surface Plasmon Resonance of Gold Nanostructures Fabricated by a Novel Nanosphere Lithography Technique
Biosensing Based on Localized Surface Plasmon Resonance of Gold Nanostructures Fabricated by a Novel Nanosphere Lithography Technique
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Analytical chemistry
دوره 85 9 شماره
صفحات -
تاریخ انتشار 2013